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Abstract

This paper considers effects of body mass on wages in the
years following labor market entry. The preferred models allow
current wages to be affected by both past and current body mass,
as well as past wages, while also addressing the endogeneity of
body mass. I find that a history of severe obesity has a large
negative effect on the wages of white men. White women face
a penalty for a history of being overweight, with some evidence
of additional penalties that begin above the threshold for severe
obesity. Furthermore, the effects of past wages on current wages
imply that past body mass has additional, indirect effects on
wages, especially for white women.
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This paper considers effects of past and current body mass on wages in the

early years of workers’ careers. Using data from the National Longitudinal

Survey of Youth 1997, I estimate dynamic models of wages in which body

mass is allowed to be endogenous. This approach allows workers’ history in

the labor market, including past wages, to affect current wages. As a result,

effects of high body mass can accumulate and persist over time. Furthermore,

the preferred estimates are unbiased even when body mass is correlated with

both individual fixed effects and time-varying unobservables.

The literature on body mass and wages has been understandably con-

cerned with the endogeneity of body mass. Cawley (2004) carefully describes

the reasons weight or body mass may be correlated with fixed and time-

varying unobserved heterogeneity; however, most previous work has focused

on either individual fixed effects or time-varying sources of endogeneity, but

not both in the same regression.1

One contribution of this paper is that the estimation addresses multiple

sources of bias simultaneously. The use of autoregressive wage equations

eliminates a source of omitted variable bias that has been ignored by previous

work, and individual fixed effects are removed by first-differencing. The panel

data are then exploited to address endogeneity associated with remaining,

1E.g., Han et al. (2011) use fixed effects. Baum and Ford (2004) use first differences.
Kline and Tobias (2008) use parent’s BMI as an instrument. Cawley (2004) and Sabia
and Rees (2012) use fixed effects and IV in separate regressions.

Two exceptions, Averett and Korenmann (1996) and Behrman and Rosenzweig (2001),
use differencing to remove sibling (or twin) fixed effects and then use lagged BMI as either
a proxy or an instrument for current BMI.
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time-varying errors. Furthermore, I submit my identifying assumptions to

considerable scrutiny, and find that they survive a variety of tests.

Another important contribution of this paper is the estimation of models

that are consistent with discrimination affecting labor market search, occu-

pational sorting or other channels that imply dynamic effects of body mass

on wages. The preferred specifications allow both current and past body

mass to affect wages. Furthermore, wages are affected not only by the lags

of body mass included in the model, but also by further lags of body mass

that have indirect effects through their effects on lagged wages.

In contrast, previous work has assumed that wage penalties associated

with obesity are the same whether the worker recently became obese or had

been obese her entire career. An obvious exception is a recent paper by Chen

(2012), which examines the effects of current BMI and BMI 10 years earlier

on the wages of workers in their 30s.2 The current paper provides a detailed

look inside of those early years using a more recent cohort of workers.3

This paper is also the first in the literature to use the NLSY97, and one

of the first to focus on workers who entered the labor market more recently

than the 1980s.4 Odgen et al. (2010) report that obesity doubled among

2Han et al. (2011) consider direct effects of current body mass on wages along with
indirect effects due to the influence of adolescent BMI on education and occupation.

3Another difference between Chen (2012) and the current paper is the treatment of
endogeneity. Chen (2012) notes that adding future body mass to her regressions suggests
a problem with endogeneity, but does not otherwise address the problem.

4Sabia and Rees (2012) replicate Cawley (2004) using a sample from Add Health that
was between 24 and 32 in 2008; however, the design of Add Health limits their ability to
perform the FE or IV estimation of Cawley (2004).
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adults in the U.S. between 1980 and 2000. If prejudice or stereotypes evolve

as the population becomes heavier, results from previous work based on the

NLSY79 may not generalize to more recent cohorts.5

Finally, the estimation sample is unique in its focus on young workers in

the first several years after entry into the labor market. Wage growth is higher

earlier in careers, job and occupational mobility are more important, and

negative shocks early in a career have lasting effects.6 As a result, estimation

with a sample of younger workers should be better able to capture potential

discrimination as it unfolds than estimation with an older sample would.

Removing fixed effects in a sample of older workers is likely to remove the

accumulated effects of past discrimination suggested by Chen (2012). Any

signals inferred from body mass should also have larger effects for younger

than for older workers because the market knows less about younger workers.7

The empirical results suggest that wages are affected by past body mass

and past wages. White men are penalized for a history of severe obesity.

White women face a penalty for being overweight at all in previous years,

with some specifications suggesting additional penalties as past or current

5Altonji et al. (2012) find that the mix of skills and family backgrounds changed between
NLSY cohorts, which would also affect the ability to generalize across decades.

6See Murphy and Welch (1992), Topel and Ward (1992), and Neal (1999) among others.
Kahn (2010 and Oreopoulous et al. (2012) find that economic conditions at labor market
entry have persistent effects.

7Hamermesh (2011) uses a similar argument to explain why effects of beauty on wages
might decline with age. Altonji and Pierret (2001) discuss statistical discrimination with
employer learning about worker productivity. Learning about healthcare costs may be
more complicated than learning about productivity if the relationship between BMI and
costs changes with age.
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BMI exceeds the threshold for severe obesity. Furthermore, I find that in-

cluding past wages in the model is critical for identification and has important

implications for the interpretation of results, especially for women.

The next section discusses models of wages and body mass, building up

to dynamic panel data specifications. Section 2 discusses the data. Section 3

describes tests of the identifying assumptions introduced in Section 1 before

discussing other details of the estimation. Section 4 presents results, followed

by various robustness tests. Section 5 concludes.

1 Empirical Models of Body Mass and Wages

Following the recent literature, our first attempt at specifying a wage regres-

sion to measure effects of body mass might take the form

wit = Xitβ +BMIitϕ+ νit, (1)

where wit is the log of person i’s wage in period t, Xit is a vector of observable

characteristics, and BMIit is a vector that describes body mass using dummy

variables or a polynomial. BMIit is potentially correlated with both fixed

individual effects related to genetics or upbringing and time-varying factors

in the error term, νit, leading to possible endogeneity.

Some previous work used fixed effects or first-differenced estimation to

eliminate bias in equation (1), but potential correlation between BMIit and
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time-varying shocks to wages then remains.8 Other estimates used instru-

mental variables to address the bias in equation (1); however, the instruments

used so far in the literature are correlated with individual fixed effects, and

likely correlated with relevant time-invariant unobservables.9 The two ap-

proaches could be combined, but doing so requires a valid instrument for

changes in BMIit.

An additional problem in the literature on weight and wages is that most

authors have at least implicitly assumed that only current body mass affects

wages.10 This assumption is inconsistent with the broader discrimination

literature. Models in which discrimination affects job search, hiring decisions

or promotions would imply that a worker’s history of body mass would affect

her current wages.11 Furthermore, any statistical discrimination story in

which body mass is used as a signal of productivity or healthcare costs would

imply effects of the entire history of body mass observed by the current

employer.

8E.g., Cawley (2004), Baum and Ford (2004), and Han et al. (2009).
9The most common instrument in the previous literature is the BMI of a family member,

which was first used by Cawley (2004); however, Han et al. (2009) and my own estimation
suggest that sibling or parent’s BMI predicts only time-invariant components of BMI.

More importantly, I find that siblings’ BMI is correlated with AFQT scores in the
NLSY79 and ’97, even controlling for respondents’ BMI. This is consistent with the warn-
ing in Cawley et al. (2011) that instruments based on genes may not be valid because a
single gene can affect multiple relevant outcomes.

10As noted above, Chen (2012) and Han et al. (2011) are exceptions.
11E.g., Lang et al. (2005) show that effects of prejudice or expected productivity differ-

ences are magnified in a wage posting model, producing wage differences even if employers
are not willing to pay more to hire their preferred group. Bjerk (2008) shows that statis-
tical discrimination can result in wage differentials over time due to effects on hiring and
promotions.
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The common assumption that wages are affected only by current body

mass is also inconsistent with the presence of labor-market frictions, regard-

less of how or why wage penalties arise. Employers that have difficulty low-

ering wages during economic downturns may have difficulty cutting wages in

response to undesirable weight gain. Workers who face limited opportunities

due to their weight may face difficulty moving to better jobs after losing

weight, much as workers who enter the labor market during recessions face

lower wages long after the economy recovers.12

If a history of being overweight or obese can affect current wages, regres-

sions like equation (1) should be modified to allow effects of both current

and past body mass. But body mass (past or current) may be affected by

past wages, which are likely correlated with current wages. In addition to the

potential simultaneity of wages and body mass that has been discussed in

the literature, it is possible that BMI is predetermined by past wages. There-

fore, lagged wages should be added to avoid omitted variable bias. Including

lagged wages has the additional benefit of allowing lags of body mass that

are not included in the regression to have indirect effects on current wages

through their effects on lagged wages.

Using a single lag of both wage and body mass results in an autoregressive

12Kahn (2010) and Oreopoulos et al. (2012) discuss the persistent effects of entering the
market during a recession. Jacobson et al. (1993) also find that plant closings and layoffs
have persistent negative effects.
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wage equation:

wit = γwit−1 +Xitβ +BMIitϕ+BMIit−1ϕ1 + αi + εit. (2)

Both BMIit and BMIit−1 are potentially correlated with the individual fixed

effect, αi, as is wit−1.
13 As before, BMIit may be correlated with the time-

varying error, εit, or with earlier shocks to the wage.

Dynamic panel data models like equation (2) can be estimated using

the differenced GMM estimator developed by Holtz-Eakin et al. (1988) and

Arellano and Bond (1991) (HENR and AB in what follows).14 The first step

in this approach is to use differences to eliminate the fixed effect:

∆wit = γ∆wit−1 +∆Xitβ +∆BMIitϕ+∆BMIit−1ϕ1 +∆εit. (3)

After differencing, ∆BMIit and ∆BMIit−1 may still be correlated with the

error term, and ∆wit−1 is correlated with ∆εit through εit−1.

Fortunately, further lagged levels of the wage are valid instruments for

∆wit−1 if there is no serial correlation in ε. Under this assumption, wit−2

is not correlated with εit or εit−1, but is correlated with ∆wit−1.
15 The

GMM estimator of HENR and AB also uses further lags, where available, as

instruments to improve efficiency.

13Further lags of BMI or w can be included, but one lag is sufficient to explain the
model. The lag structure is discussed further in Section 3.

14See Arellano and Honoré (2001), Bond (2002), or Arellano (2003) for reviews.
15The correlation of wit−2 and ∆wit−1 is weak if γ is close to 1; however, the results

presented below suggest this is not a problem.
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Assuming no serial correlation in the time-varying errors, εit, is not equiv-

alent to assuming no serial correlation in wages or wage growth. On the

contrary, the autoregressive specifications of equations (2) and (3) assume

that current wages are correlated with past wages, and current wage growth

is correlated with past wage growth. The assumption of no serial correlation

in ε is violated only if there is serial correlation in residual heterogeneity

that is uncorrelated with lagged wages, BMI (lagged and current), and the

regressors included in Xit.
16

Lagged levels of BMI are valid instruments in the differenced estimator

under an additional assumption. Specifically, BMIit−2 and further lags are

valid instruments for ∆BMIit and ∆BMIit−1 as long as BMIit is uncorre-

lated with εit+1 for all t. On an intuitive level, if the endogeneity of BMIit

is due to reverse causality, this assumption requires that random shocks to

future wages do not affect current body mass. If endogeneity is due to unob-

served shocks that are common to BMIit and εit, this assumption requires

that those shocks only affect wit+1 through their effects on BMIit and wit.

Finally, the identification of equation (3) requires changes in BMI to be

predicted by its lagged levels. BMIit−2 should be correlated with ∆BMIit

if BMIit is endogenous. This assumption finds empirical support in the

dynamic models of body mass estimated by Goldman et al. (2010) and Ng et

16In contrast, serial correlation in the residuals of static wage regressions is expected
because those residuals are not independent of lagged wages. The dynamic estimation
in the current paper, therefore, supports the comments in Cawley (2004) about serial
correlation in the previous literature.
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al. (2010). Studies in the epidemiology literature also find that large changes

in weight are more common among those who were initially heavier.17 Lee et

al. (2010) suggest that avoiding weight gain may require greater effort from

overweight women than from normal weight peers. Finally, in supplemental

regressions (available upon request) I find that BMIit−2 is correlated with

∆BMIit, with F statistics above traditional cutoffs for weak instruments.18

2 Data

This paper uses data from the 1997 through 2009 waves of the National

Longitudinal Survey of Youth 1997 (NLSY97). Individuals in the sample

were between 12 and 16 years of age in 1996. They were between 24 and

30 when interviewed in 2009. The data also contain detailed information on

labor market history, demographics, and other common control variables.

The NLSY97 has important advantages over the 1979 cohort for the pur-

poses of this paper. The ’97 respondents were young enough at their first

interview that nearly all of them are observed as they begin their careers.

They were also asked about height and weight in every year of the survey.

In contrast, NLSY79 respondents were as old as 22 when first interviewed;

and were not asked about weight in ’79, ’80, 83, ’84 or ’87. As a result, ’79

cohort was between 25 and 33 years old in the first year (1990) that BMI

17Examples include Lewis et al. (2000) and Williamson et al. (1990).
18These regressions are not equivalent to the first stage of 2SLS. They are suggestive. I

still consider the possibility that the instruments are too weak to identify coefficients on
both BMIit and BMIit−1 when I examine the robustness of my results.
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could be observed for three years in a row.

In what follows, attention is limited to white men and women due to

concern for sample sizes. Over twice as many respondents identify as white

than as black, which is the second largest racial or ethnic group. Furthermore,

requiring at least three consecutive years of wage observations reduces the

sample size more for minorities and women than for white men.

The estimation sample only includes jobs that follow full-time labor mar-

ket entry. I define entry as the first two consecutive years in which the

individual works full time for at least 75% of the year. This restriction is

intended to exclude the temporary or part-time jobs of younger workers that

likely bear little resemblance to their eventual careers.19 Part-time jobs that

take place later in workers’ careers are still included in the sample.

The sample also excludes respondents who were in the military, as well

as observations for women who were pregnant at any point since the last

interview. Outliers in the wage distribution are only dropped if ∆ ln (wit) ≥

6.5, leaving some observations with wages that may seem unusually high or

low.20 Limiting attention to observations that can be use as time t, t− 1, or

19Nearly 75% of jobs excluded by the entry restriction are part-time, compared to 9%
of jobs in the sample. Median tenure is 23 weeks for excluded jobs, but 85 weeks for jobs
following full-time entry.

The sample includes people who entered the labor-market but returned to (or never
left) school. The results discussed below are robust to excluding people who are in school,
but some statistical significance is lost due to the smaller sample size.

20All of the results that follow are robust to the treatment of outliers in the wage
distribution. Since these outliers are often the result of measurement error, robustness to
the treatment of outliers suggests the results are at least not affected by the most severely
mismeasured observations in the data.
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t− 2 in equation (3) leaves 9,037 observations for 1,473 white men and 5,408

observations for 1,060 white women.

A more detailed discussion of the sample’s selection is left to an appendix.

The rest of this section discusses information on body mass in the data,

followed by a brief description of the estimation sample.

2.1 Body Mass and Measurement Error

The data include self-reported height and weight in each year, which allows

the construction of BMI.21 The measurement error introduced by the use

of self-reported height and weight is well known and widely discussed; how-

ever, previous research has ignored the fact that roughly 10% of person/year

observations in either NLSY cohort come from telephone interviews, which

worsen misreporting relative to in-person interviews.22 All regressions that

include current or lagged BMI variables also include corresponding dummy

variables for interviews being conducted by phone.23

I do not rescale self-reported height and weight based on the relationships

21BMI is defined as (weight in kg)/(height in m)2
22White women are especially sensitive to interview method. Controlling for age and

individual fixed effects, average reported weight falls by over 3.5 pounds when white women
are interviewed by phone. Reported weight falls by over seven pounds when overweight
women are interviewed by phone.

23The coefficients on indicators of phone interviews are uniformly small and statistically
insignificant in estimated wage equations, suggesting that any measurement error in wages
is at least less sensitive to interview mode than body mass is.

More generally, the literature on measurement error in wages suggests that the errors
are mean-reverting. Furthermore, Pischke (1995) argues that the mean reversion is a
combination of white noise and the magnitude of changes being understated. On an
intuitive level, it seems the understatement of changes in income would work against this
paper finding any association between BMI and changes in wages.
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between reported and actual measures in NHANES data, as Cawley (2004)

and others do, for a few reasons. First of all, the assumptions required to

treat NHANES samples as validation data for NLSY cohorts are not credible

given the mix of interview methods in the NLSY.24 Secondly, rescaling BMI

to adjust for systematic misreporting may change the BMI numbers at which

we observe wage penalties, but it should not affect our ability to determine

whether heavier workers are penalized at some point.

On a more fundamental level, it’s not clear why even measured BMI

should be considered the ”true” variable of interest in studies of labor mar-

ket outcomes. Employers rarely measure the body mass of their workers,

but they easily observe whether workers appear heavier or lighter than is

considered desirable. Therefore, body mass, measured or not, is likely just a

proxy for the appearance of fatness (or thinness).25

2.2 Summary Statistics

Table 1 presents basic summary statistics for the white men and women in

the sample. The appendix tables present additional summary statistics. The

dependent variable in regressions that follow is the natural log of hourly wage.

24The critical assumption is that the distribution of actual measures conditional on
reported is the same in both samples. Differences between interview modes suggest this
assumption is violated even within NLSY cohorts. Furthermore, Han et al. (2009) suggest
that NHANES respondents expect to be weighed, but NLSY respondents do not. See
Courtemanche et al. (2015) for a more detailed discussion.

25Johansson et al. (2009) make a related point in their study of the effects of BMI,
waist circumference and body fat on labor market outcomes in Finland. Rooth (2009) is
noteworthy for using digitally manipulated photographs to estimate effects of appearing
more or less fat.
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Average log wage is around 2.3 for men and 2.2 for women, which translate

to hourly wages of roughly 10 and 8.8.

The average respondent in the sample is roughly 24 years old.26 In 2009,

the average respondent (male or female) was 27 years old. Average years in

the labor market is 4.5 for white men and four for women. The average male

respondent in 2009 had been in the labor market for seven years, accumu-

lating 6.4 years of actual work experience. The average woman in 2009 had

been in the labor market for 6.2 years, accumulating 5.6 years of experience.

Average reported BMI for both genders exceeds 25, which is the threshold

for being overweight. Less than 2% of white men and 4.2% of white women

report being underweight (BMI ≤ 18.5). Over 57% of white men and nearly

42% of white women are overweight (BMI ≥ 25). 22% of white men and 20%

of white women are obese (BMI ≥ 30). Almost 8% of men and over 10% of

women report a BMI that qualifies as severely obese (BMI ≥ 35).

As seen in the appendix tables, movement between official BMI categories

is not uncommon.27 For either gender, moving to a heavier BMI category

is more likely than moving to a lighter category. Additionally, the changes

in BMI associated with changes in BMI categories (not shown) tend to be

relatively large.28 Therefore, it does not appear as though identification is

26Respondents were as young as 16 in period t−2, or 18 in t. This introduces the possi-
bility that changes in BMI reflect changes in height for part of my sample and changes in
weight for the rest; however, the results presented below are robust to excluding respon-
dents under the age of 20.

27Roughly 9% of men and 8% of women move from one category to another between
two consecutive years. If we consider three consecutive years, 15% of men and 13% of
women in the sample have moved between categories at least once (not shown).

28The median percent change in BMI associated with a change in BMI category is 8.5
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comes from small fluctuations in weight that employers would not notice.

3 Estimation

Recall that the differenced equations we’re interested in take the form

∆wit = γ∆wit−1 +∆Xitβ +∆BMIitϕ+∆BMIit−1ϕ1 +∆εit. (3)

As noted above, the differenced GMM estimator uses second and further

lagged levels as instruments for ∆wit−1 and other endogenous variables. The

GMM instruments enter as separate vectors for each year.29 If a lag is missing

for a given person and year, its value is set to zero. This allows the use of

further lags when available without limiting observations unnecessarily.

Letting Z denote the matrix of all instruments and ϵ̂ the vector of esti-

mated residuals, the moment conditions are E [Z ′̂ϵ] = 0. These moments are

estimated in Stata using XTABOND2.30 All estimates use two-step efficient

GMM, which produces robust standard errors, and apply the Windmeijer

(2005) finite-sample variance correction.

percent for men, and 9.5 percent for women. Median changes in BMI are three to four
times larger when categories change than they are otherwise.

29At t = 3, wi1 is an instrument for ∆wi2. At t = 4, wi2 and wi1 are instruments for
∆wi3, and so on.

30See Roodman (2006) for documentation.
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3.1 Testing Assumptions

In Section 1, I assumed that the time-varying errors, εit, are not serially

correlated. AB developed tests for this assumption. First-differenced regres-

sions like equation (3) are AR(1) by design. If there is serial correlation in

ε, equation (3) will be at least AR(2). I present tests for serial correlation

with all of the results that follow.31

The results are also presented with tests of overidentifying restrictions.

The Hansen J test examines the joint validity of all moment conditions.

When BMI is treated as endogenous, difference-in-Hansen tests are used to

evaluate the validity of wage lags and BMI lags separately.

The validity of lagged wage levels as instruments is independently evalu-

ated by each of these tests. Lagged wage levels are valid instruments if εit are

not serially correlated. If we fail to detect serial correlation that does exist,

tests of overidentifying restrictions could still reject the validity of lagged

wage instruments as long as some further lags are valid instruments.32

The validity of lagged BMI instruments are only evaluated directly by the

overidentification tests; however, tests of serial correlation make the assump-

tions of overidentification tests more plausible. If BMIit were correlated

with εit+1 but not εit+2, the second lags would not be valid instruments but

the third lags would be. The validity of lagged BMI instruments would be

31Test results for AR(3) and higher are available on request.
32The tests of serial correlation would have to miss a lot for lagged wage instruments to

be untestable using overidentification. If equation (3) were AR(2) but not AR(3), wit−2

would not be a valid instrument for ∆wit−1, but wit−3 would be. If the regression were
AR(3) but not AR(4), wit−4 would be a valid instrument, etc.
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theoretically untestable only if BMIit was correlated with εit+1, εit+2, etc.;

but that seems unlikely unless those residuals are correlated with each other.

For example, BMIit could be correlated with εit+1 and later residuals due

to health shocks that affect body mass more immediately than wages. But

such health shocks would imply serial correlation in ε, unless the unobserved

factors that were common to BMIit and εit+1 were independent of the factors

common to BMIit and εit+2. This strikes me as improbable; however, it is

always possible that tests are too weak in practice to reject hypotheses that

could be rejected in theory. Therefore, I consider the implications of health

shocks for identification in Section 4.2.

3.2 Other Potential Problems with Instruments

The use of all lagged levels of wage and BMI variables produces a large num-

ber of instruments. A larger set of instruments improves efficiency, but not

without a cost. As discussed by Roodman (2009) and others, using “too

many” instruments overfits the endogenous variables, which biases coeffi-

cients towards OLS and weakens overidentification tests.

The results that follow restrict lags to the second through fifth. Using

all available lags produces coefficients that are smaller in magnitude, which

is consistent with adding weak instruments. Restricting lags further (e.g.,

excluding the fifth lag) has little effect on coefficient estimates.
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3.3 Regression Specifications

All specifications presented in this paper model BMIit as a vector of dummy

variables for various levels of body mass. The use of dummy variables is

motivated by the need for a simple specification that allows a non-linear

relationship between BMI and wages.33 Dummy variables are consistent

with the idea that wage penalties are associated with weight exceeding levels

that are considered desirable in the market. However, there is no theoretical

reason to adopt one specification of BMIit over any other.

When estimating regressions with dummy variables for BMI categories,

the previous literature relied on categories defined by the WHO (overweight,

obese, etc.); however, these categories were defined for the study of public

health, not labor markets. As noted by Gregory and Ruhm (2011), wage

penalties for high body mass may begin at points that fall between WHO

cutoffs. Even if employers wanted to penalize workers based on the WHO

categories, it’s not clear how firms’ imperfect assessments of body mass would

line up with the imperfectly reported height and weight in the data.

The next section begins with specifications that use traditional BMI cat-

egories, but I also consider alternative BMI thresholds as a robustness check.

Focusing on specifications of BMIit that include one or two dummy variables,

I estimate a large number of alternative models with thresholds ranging from

23 to 38. I then examine the robustness of coefficient estimates for a BMI

33In preliminary estimation, linear and polynomial specifications of BMIit only pro-
duced statistically significant results in static models. Ignoring statistical significance,
results using cubic polynomials are consistent with results from the preferred models.
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category to other changes in the specification of BMIit, as well as to the

treatment of outliers in the distribution of wages. I also compare similar

models using the specification tests of Bond et al. (2001) and Andrews and

Lu (2001).34 In the end, I find that specifications based on traditional cutoffs

perform relatively well.

All of the dynamic models presented below include one lag of wage and

one lag of BMI. None of the tests for serial correlation suggest that more lags

are needed, and the tests of overidentification fail to suggest a problem with

the instruments. Further lags of BMI are never statistically significant and

do not change the basic results. The most obvious effect of adding a second

lag of either BMI or the wage is a reduction of observations by 20-25%.

The suitability of a simple lag structure may be related to the youth of

the sample. While one lag of wages or BMI may be insufficient in a sample

of older workers, younger workers have less history in the market. It is also

possible that the indirect effects of BMIit−2 and wit−2 on wit−1 make the

addition of second lags redundant; however, adding further lags may simply

ask too much of the data.

All regressions control for the local unemployment rate and incidence of

obesity in the state, as well as dummy variables for region, urban residence,

and being interviewed by telephone.35 When lagged values of BMI are used,

34Both of these tests are based on comparisons of the Hansen J statistic. I use leave-
one-out crossvalidation with these tests to ensure that the results are not peculiar to the
estimation sample.

35Local unemployment and state identifiers are provided by the NLSY97 Geocode files.
Percent obese in the state is estimated by the CDC.
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the corresponding lag of the phone indicator is also included. Education

enters as dummy variables for completing high school, some college, or college

and beyond. I control for time using dummy variables for calendar year and

years since labor market entry. No estimation in this paper is weighted.

I also control for actual experience in the labor market and it’s square,

as have Cawley (2004) and others.36 To control for commitment to the labor

market, I add interactions of experience with years since entry. Control-

ling for actual experience and its interactions makes the validity of lagged

wages as instruments more plausible because lagged wages could reflect the

accumulation of experience or commitment to the labor market.37

Accumulated experience could also affect BMI, as young workers who

are steadily employed may have less time to invest in maintaining a healthy

weight. Consistent with this possibility, I find that experience and BMI are

positively correlated in my sample, even adjusting for age.38 It’s possible,

therefore, that excluding experience would improperly attribute the effects

of experience to body mass.39

36Controlling for experience is especially important to any study of the earnings of young
women. As discussed by Altonji and Blank (1999), controlling for labor market experience
has been critically important to understanding the gender wage gap. In addition to af-
fecting estimates of the unexplained wage gap, controlling for experience is also necessary
to avoid bias in other coefficients.

37Overidentification tests for lagged wage instruments improved in preliminary estima-
tion with the use of actual experience and its interactions.

38For both men and women in my sample, experience has a positive, statistically sig-
nificant correlation with BMI, overweight status, obesity and severely obesity. Controling
for age, I find similar positive correlations, but the correlations between experience and
severe obesity are no longer statistically significant. Changes in labor market experience
are also positively and significantly correlated with changes in body mass.

39Lang and Manove (2011) present a similar (but more complete) argument in favor
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On the other hand, labor market experience could be endogenous in any

wage equation. Experience could also be affected by unobserved character-

istics that affect body mass, or affected more directly by high body mass.

Fortunately, the use of a well-established instrument, potential experience

(age−schooling−six), for actual experience should alleviate concern about

bias either case.40

Finally, there are a number of potential confounders, such as occupation

or hours worked, that are excluded from the preferred models due to their

likely endogeneity. I find that the main results are robust to the addition of

most potentially endogenous confounders.41 The estimated effects of BMI on

the wages of women do fall when controls for occupation are included; how-

ever, the exogeneity of both current and lagged occupation can be rejected.

Even second lags for some occupations can be rejected.

of controlling for education when analyzing the black/white wage gap. They show that
black men acquire more education than white men of the same measured ability. As a
result, work that excludes education on the grounds that it is endogenous and affected by
anticipated discrimination understate the racial wage gap.

40I use the square of potential experience and its interactions where appropriate. Using
potential experience as a traditional instrument in dynamic panel data models means using
it’s first difference, and most of the variance in this difference is due to exogenous variation
in interview dates.

41The results are robust to controls for marital status, the number and ages of children,
hours worked, tenure, on-the-job training, and employer-provided health insurance. An-
grist and Krueger (1999), among others, note that a lack of robustness to changes in the
included variables could suggest sensitivity unobservable characteristics.
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4 Results

Section 4.1 presents the main results, as well as initial tests of identifying

assumptions; and then compares the preferred dynamic models to simpler

regressions. Section 4.2 presents additional tests of the identification and

robustness of the main results.

4.1 The Preferred Models

As discussed above, BMIit is modeled using dummy variables for exceeding

various BMI thresholds. For both men and women, I present specifications

based on the familiar categories of overweight, obese and severely obese before

discussing alternative specifications of BMIit. I then compare the preferred

dynamic models to simpler dynamic and static models.

4.1.1 Results for White Men

Table 2 presents results for white men from various models that use dummy

variables indicating overweight, obesity or severe obesity.42 First of all, note

that the tests presented in the lower panel are all consistent with the iden-

tifying assumptions discussed above. All of the equations are AR(1) due to

first-differencing; but none of them are AR(2), which they would be if there

42All specifications in Tables 2 and 3 use lagged indicators of overweight, obesity and
severe obesity as instruments to facilitate comparisons. I also use lags of three BMI
dummies as instruments when alternative BMI cutoffs are considered, with each alternative
category replacing the closest WHO category.
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were serial correlation in the residuals.43 Furthermore, none of the tests

of overidentifying restrictions reject the validity of the GMM instruments.

The p-values for Hansen and difference-in-Hansen tests are all well above the

conservative threshold of 0.25 suggested by Roodman (2009).

The coefficient estimates in Table 2 suggest that white men face a penalty

of roughly 17% for having been severely obese in the previous year. The

coefficients on lagged severe obesity range from -0.165 (0.060) in column 4

to -0.172 (0.059) in column 5. No other BMI variable has a statistically

significant coefficient in this table, and there is no evidence of current BMI

having any effect on the wages of white men.44

The results for men also support the inclusion of an autoregressive term

in the wage equations, and I find that controlling for lagged wages is essential

for identification. In specifications that include severe obesity, coefficients on

lagged log wages are between 0.072 (0.041) and 0.077 (0.042). Specifications

that exclude lagged wages but are otherwise similar to those in Table 2 (not

shown) are at least AR(2). Consistent with Cawley’s (2004) point that lagged

BMI variables are not likely to be valid instruments in the presence of serial

correlation, the second lags of BMI are rejected by overidentification tests

in static wage equations.

When I consider alternative dummy variable specifications of BMIit for

white men, I find that the penalty for lagged severe obesity is remarkably

43I also found no evidence of the residuals being AR(3) or higher.
44Results for the model that specified BMIit using overweight and obese are excluded.

They are consistent with those in columns 2 and 3.
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robust.45 There is no robust evidence of an effect at lower levels of current

or lagged body mass for white men. Furthermore, the specification test

proposed by Andrews and Lu (2001) supports models that use severe obesity

over similar models that use nearby cutoffs.46

I select a preferred specification from Table 2 using the test of parameter

restrictions proposed by Bond et al. (2001).47 The only restricted specifica-

tion that cannot be rejected in favor of the full specification (column 1) is

the specification in column 5, which includes dummy variables for being over-

weight and severely obese.48 Since the specification in column 5 is simpler

than that in column 1, it is my preferred specification in what follows.

4.1.2 Results for White Women

The results presented in Table 3 show that white women face a penalty for a

lagged BMI in (or above) the overweight category. The coefficient on lagged

overweight status is -0.082 (0.040) in column 2, and -0.093 (0.044) in column

6. The Andrews-Lu test suggest that the specification in columns 2 and 6 are

preferred to others that model BMIit using the same number of traditional

BMI categories. The specification in column (6), which models BMIit using

dummy variables for reported overweight and severe obesity is also the same

45The coefficient on lagged severe obesity is qualitatively similar and statistically sig-
nificant in all models with a lower cutoff below 33. Coefficients on lagged BMI≥34.5 are
similar, but smaller and statistically significant in fewer models.

46When comparing models with the same number of variables and instruments, the test
of Andrews and Lu (2001) selects the model that minimizes the Hansen J statistic.

47Bond et al. (2001) show that differences between the J statistics of restricted and
unrestricted models are χ2 with degrees of freedom equal to the number of restrictions.

48Columns 2, 3 and 6 are rejected at a 5% level. Column 4, at a 10% level.
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as the preferred specification for white men.

Alternative BMI thresholds are more relevant for white women than for

white men. The penalty for a lagged BMI ≥ 24.5 is robust across all specifi-

cations with a second cutoff at or above 27, or without a second BMI variable.

As seen in Table 4, the coefficients on lagged BMI ≥ 24.5 (columns 3-5) are

similar to, but larger than analogous coefficients on lagged overweight status

(columns 1 and 2).49

When I consider alternative thresholds in the heavier part of the BMI

distribution, I find evidence of additional penalties for a BMI ≥ 37. This

suggests penalties for being in the heaviest eight percent of the sample, as do

the results for severely obese white men.50 The results in columns 2 and 5 of

Table 4 suggest a penalty for a current BMI ≥ 37 of 13-14%. Furthermore,

the coefficient on a lagged BMI ≥ 37 is -0.099 (0.038) in column 5.51

The Hansen J statistics in Table 4 support the use of reported overweight

status instead of the lower threshold of 24.5; however, the direction of this

difference is not robust to the treatment of outliers or to minor changes in

the set of instruments used. In either case, the results suggest that women

who reported a BMI at or near the threshold for overweight in the previous

year face a penalty of 9-12%.

Regardless of specification, I find that lagged wages have larger effects

49Coefficients on lagged overweight status are statistically significant in roughly half as
many models as coefficients on lagged BMI ≥ 24.5.

507.9% of women in the sample report a BMI ≥ 37. 7.8% of men report a BMI ≥ 35.
51The number of instruments changes when a higher threshold of 37 is used instead of

the standard cutoff of 35, making comparisons of Hansen J statistics difficult.
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on current wages for white women than for white men. The coefficients on

wit−1 range from 0.211 (0.057) to 0.231 (0.057) for women, compared to 0.077

(0.042) for men. As in Table 2, there is no evidence of serial correlation in

the residuals of any model shown in Table 3 or 4; however, models that

exclude lagged wages (not shown) are at least AR(2). Furthermore, none of

the overidentification tests in Tables 2 through 4 cast doubt on the validity

of the instruments.

On a more meaningful level, autoregressive wage equations imply that

further lags of body mass (BMIit−2, BMIit−3, etc.) affect wages even when

only BMIit−1 enters the model directly. The lagged wage, wit−1, is a function

of BMIit−2 and wit−2, which is affected by BMIit−3 and wit−3, and so on.

This is an important advantage of dynamic models over the static models

of previous work: Wages are allowed to respond slowly to changes in BMI,

resulting in penalties that persist and accumulate over time.

As an example, consider two women who enter the market at t− 2. One

has a BMI of 38 and the other has a BMI of 23. The heavier woman loses

weight and the other gains weight so that both are overweight (but not obese)

in years t− 1 and t. In t− 1, the woman who had been heavier faces a 20%

penalty according to column (5) of Table 4, while the woman who had been

lighter faces no statistically significant penalty for her recent weight gain.

In year t, both women have been overweight (but not obese) for two years;

however, one faces a penalty of 10% and the other faces a penalty of up to
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15%.52 Even using the more conservative specification of column (1), the

woman who was heavier at t − 2 would face a penalty of 11.4% in year t,

while the other woman faces a penalty of 9.3%.

The negative effects of high body mass also accumulate over time. A

woman entering the market with a BMI over 37 faces an initial penalty

of 13%. If she does not lose weight, she will again face the 13% penalty

for current body mass in her second year, plus a 20% penalty for her past

body mass. In her third year with a BMI over 37, she will be penalized an

additional 4.5% for her BMI two years ago, on top of the 33% penalty for

her BMI in t and t − 1. A woman with a reported BMI near the threshold

for being overweight faces a penalty of 9-12% after one year that approaches

12-16% over time.

4.1.3 Comparisons to Simpler Models

Tables 5A and 5B compare the preferred dynamic models to OLS regressions

and a dynamic model that assumes ∆BMIit is exogenous. The OLS results

for men in Table 5A suggest that overweight men are paid more than lighter

peers while severely obese men are paid less. The OLS results in Table 5B

suggest that being overweight (upper panel) or having a BMI ≥ 24.5 (lower

panel) is associated with lower wages for white women; however, this negative

association is due to lagged BMI, not current.

52The estimated effect of BMIit−2 ≥ 37 in t is -0.044 (0.020), the effect in t−1 multiplied
by the coefficient on ∆wit−1. If the woman was also overweight in t − 1, her combined
penalty in t is -0.148 (0.056).
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The autoregressions presented in the second columns of Tables 5A and

5B remove any bias due to individual fixed effects or the omission of lagged

wages, but treat ∆BMIit and ∆BMIit−1 as exogenous. Tests of overidentify-

ing restrictions (not shown) reject this assumption, suggesting that changes

in BMI are correlated with time-varying unobservables. The fact that the

negative effects of body mass found in the preferred specifications are not

found in the second column of either table is consistent with time-varying

unobservables, such as time spent sitting at a desk, that are positively cor-

related with both wages and body mass.

Finally, note that the error terms in the OLS regressions are serially

correlated, while the residuals in the dynamic models are not. The serial

correlation of residuals in the static models supports the argument of Cawley

(2004) against the use of lagged BMI variables as instruments in static wage

regressions. In contrast, the dynamic wage equations explicitly model the

correlation between past and current wages that creates the serial correlation

in static wage regressions. As a result, we see no evidence of residual serial

correlation in the dynamic models.

4.2 Robustness Tests and Potential Sources of Bias

The identifying assumptions in this paper have already received considerable

scrutiny from tests of serial correlation and overidentifying restrictions. The

results present above are also robust to changes in the treatment of outlier, as

well as minor changes in model specification. This section presents additional
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tests of identifying assumptions, and considers the potential effects of sample

selection on the results.

4.2.1 Health Shocks & Identification

There are two justifications for further examination of the identifying as-

sumptions in this paper. First, as is always the case, it is possible that a test

presented in Section 4.1 failed to reject an assumption that should have been

rejected.53 Secondly, as discussed in Section 3.1, the validity of lagged lev-

els of BMI as instruments would be theoretically untestable if BMIit were

somehow correlated with all future wage residuals (εit+1, εit+2, etc.) without

those residuals being correlated with each other.

The most obvious reason why BMIit may be correlated with future wage

residuals is that random health shocks could affect body mass immediately,

but have delayed effects on wages that are independent of BMIit.
54 Although

health shocks that cause BMIit to be correlated with both εit+1 and εit+2

should also cause serial correlation in ε, which I’ve tested for, I examine the

possibility that my main results are biased by such shocks in Table 6.

Table 6 compares the preferred models from Section 4.1 to models that

add indicators of current and lagged general health. The self-reported mea-

sure of health that is available in the data is not ideal; however, it is corre-

53Fortunately, tests of serial correlation and overidentifying restrictions do reject hy-
potheses that we expect to be rejected, but type II errors are still possible.

54I also examined the possibility that hard-to-observe individual ability affects both
BMIit and future wage growth due to employer learning or human capital accumulation.
My analysis, which I ommit for brevity’s sake, found no evidence of bias related to time-
varying effects of ability.
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lated with body mass as one would expect.55 If the main results are biased

by health shocks that are correlated with changes in reported health, those

results should not be robust to the inclusion of changes in health. The results

would also not be robust to the addition of health variables if health were an

intermediate outcome through which body mass affected wages. Therefore,

the falsification test in Table 6 could suggest a problem with my identifying

assumptions even when none exists.

The preferred models for men and women are quite robust to the inclusion

of changes in general health status. Regardless of whether I add only the most

recent changes or also include lagged changes in health, the coefficients on

BMI are similar.56 Furthermore, none of the overidentification tests change

between columns in a way that suggests health shocks affect the identification

of the BMI variables, or the overall identification of the model.

4.2.2 Sample Selection

The previous literature provides some evidence of selection into employment

varying with body mass.57 Since the estimation in this paper requires three

consecutive years of wages, some investigation of sample selection bias is war-

55Respondents were asked to evaluate their health on a five-point scale from “excellent”
(1) to “poor” (5). Higher levels of BMI are negatively correlated with “excellent” or “very
good” health, and positively correlated with “fair” or “poor” health.

56I obtain similar results from models with up to five lags of the health indicators, and
models that use residuals of lagged BMI on health as instruments. Results for BMI are
also not sensitive to assumptions about the exogeneity of health.

57Rooth (2009) finds that body mass affects call-back rates for both men and women
in Sweden, while Caliendo and Lee (2013) find negative effects on employment only for
obese women in Germany.
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ranted. That said, a differenced estimator would only be biased by selection

on time-varying unobservables. Selection on unobservables that are constant

over time is addressed by differencing.

Following Semykina and Wooldridge (2010), I estimate probits for the

probability of being in the sample in year t with valid observations for t,

t − 1 and t − 2.58 I then add the inverse Mills ratios and their interactions

with time dummies to the wage regressions. The hypothesis of no selection

is rejected if coefficients on the Mills ratios and their interactions are jointly

significant.

These tests do not suggest bias from sample selection. None of the coef-

ficients on the inverse Mills ratios or their interactions are statistically sig-

nificant. The p-values on tests of joint significance are 0.26 for men and 0.29

for women.

4.2.3 Further Examination of the Strength of Instruments

Although preliminary regressions support the assumption that BMIit−2 and

other recent lags predict ∆BMIit, one might still worry that there is not

enough variation in the lagged levels to identify coefficients on both ∆BMIit

and ∆BMIit−1. In that case, the coefficients in my preferred models, espe-

cially for ∆BMIit, would be biased toward zero.59

One way to address a potential lack of variation would be adding lags

58I include AFQT, which is differenced out of wage equations, in the probit estimates.
59More precisely, the coefficients would be biased toward those in the second columns

of Tables 5A and 5B, which are small and statistically insignificant.
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of continuous BMI variables to the instrument matrix. This would exploit

variation in past BMI that is not captured by dummy variables. When I add

lags of BMI to the set of instruments, however, the results (not shown) are

similar to those presented above.60

I also compared the preferred specifications to restricted specifications

that exclude either ∆BMIit or ∆BMIit−1.
61 If there is an effect of ∆BMIit

that we haven’t observed due to insufficient variation in the instruments, the

coefficients on ∆BMIit should change when ∆BMIit−1 is excluded.62

The results (not shown) do not suggest that the preferred models are

biased by weak instruments. Dropping ∆BMIit−1 from wage equations does

not reveal previously unidentified effects of ∆BMIit. In fact, the estimated

penalty white women face for a current BMI ≥ 37 is only statistically sig-

nificant when lagged BMI is included in the regression. Furthermore, the

specification test of Bond et al. (2001) rejects the restricted models for both

men and women in favor of models that include both ∆BMIit and ∆BMIit−1.

60I add only the second and third lags of continuous BMI to limit the increase in the
number of instruments.

61Kropfhäußer and Sunder (2015), citing an early version of the current paper, estimate
models that only include BMI variables from one year. They use German data that
includes wages every two years and BMI in off years. With t indexing years, their model
takes the form: wit = γwit−2 +Xitβ +BMIit−1ϕ+ νit, where BMIit−1 is quadratic.

62The coefficients could also change because ∆BMIit is correlated with ∆BMIit−1.
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5 Conclusions

The results of this paper demonstrate the importance of using dynamic mod-

els when considering effects of body mass on wages. I find that past body

mass affects the wages of young workers more often than current body mass.

Furthermore, current wages are affected by lagged wages, which are affected

by further lags of body mass and wages. Therefore, my results suggest that

the penalties for a high body mass persist and even accumulate over time,

especially for women.

I find that white men are penalized for past severe obesity, while white

women begin to face penalties slightly before the threshold for being over-

weight. Women are penalized for a past BMI ≥ 24.5, with additional penal-

ties for past or current body mass that begin above the threshold for severe

obesity. Considering the distribution of BMI in the sample, the results sug-

gest that over 40 percent of young white women face some penalty for their

weight, while roughly eight percent of men face penalties.

Consistent with the youth of the sample, the penalties for high body

mass identified in this paper do not appear to be driven by changes in health

or selection into the labor market. The results are robust to the addition

of controls for general health, and tests for sample selection bias provide

no cause for concern. Furthermore, the results survive a number of other

robustness tests, as well as tests of identifying assumptions.

While this paper cannot identify the reasons workers are penalized for
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high body mass, the estimation is more consistent with theories of discrim-

ination that incorporate labor market frictions than is most previous work.

For example, models in which discrimination affects labor market search, like

those in Bowlus and Eckstein (2002) and Lang et al. (2005), would suggest

penalties for past body mass. Wages would be affected by body mass when

workers found their current jobs, and lower wages on one job would lead to

lower reservation wages as workers look for better jobs.

Finally, persistent effects of high body mass on wages are also consistent

with effects on occupational selection. The models presented in this paper

exclude occupation due to its endogeneity, and tests reject the exogeneity

of even lagged occupation variables. These test results suggest that the

occupational selection observed in the NLSY79 by Lakdawalla and Philipson

(2007) and Harris (2015) may still affect the wages of young workers who

entered the labor market in more recent decades.
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Lee, I.-M., L. Djoussé, H. D. Sesso, L. Wang, and J. E. Buring (2010).
Physical activity and weight gain prevention. JAMA 303 (12), 1173–1179.

37



Lewis, C. E., D. R. Jacobs, H. McCreath, C. I. Kiefe, P. J. Schreiner, D. E.
Smith, and O. D. Williams (2000). Weight gain continues in the 1990s:
10-year trends in weight and overweight from the cardia study. American
Journal of Epidemiology 151 (12), 1172–1181.

Michaud, P.-C. and A. V. Soest. (2008). Health and wealth of elderly cou-
ples: Causality tests using dynamic panel data models. Journal of Health
Economics 27 (5), 1312–1325.

Neal, D. A. (1999). The complexity of job mobility among young men.
Journal of Labor Economics 17 (2), 237–61.

Ng, S. W., E. C. Norton, D. K. Guilkey, and B. M. Popkin (2010). Estimation
of a dynamic model of weight. Technical report, NBER Working Papers
15864.

Ogden, C. L. and M. D. Carroll (2010). Prevalence of overweight, obesity, and
extreme obesity among adults: United states, trends 1960–1962 through
2007–2008. National Center for Health Statistics 6, 1–6.

Oreopoulos, P., T. von Wachter, and A. Heisz (2012). The short-and long-
term career effects of graduating in a recession. American Economic Jour-
nal: Applied Economics 4 (1), 1–29.

Pischke, J.-S. (1995). Measurement error and earnings dynamics: Some
estimates from the psid validation study. Journal of Business & Economic
Statistics 13 (3), 305–314.

Roodman, D. M. (2006). How to do xtabond2: An introduction to ‘differ-
ence’ and ‘system’ gmm in stata. working paper 103, Center for Global
Development.

Roodman, D. M. (2009). A note on the theme of too many instruments.
Oxford Bulletin of Economics and Statistics 71 (1), 135–158.

Rooth, D.-O. (2009). Obesity, attractiveness, and differential treatment in
hiring: A field experiment. Journal of Human Resources 44 (3), 710–735.

Sabia, J. J. and D. I. Rees (2012). Body weight and wages: Evidence from
add health. Economics & Human Biology 10 (1), 14–19.

38



Semykina, A. and J. M. Wooldridge (2010). Estimating panel data models in
the presence of endogeneity and selection. Journal of Econometrics 157 (2),
375–380.

Topel, R. H. and M. P. Ward (1992). Job mobility and the careers of young
men. The Quarterly Journal of Economics 107 (2), 439–479.

Williamson, D. F., H. S. Kahn, P. L. Remington, and R. F. Anda (1990).
The 10-year incidence of overweight and major weight gain in us adults.
Archives of Internal Medicine 150 (3), 665.

Windmeijer, F. (2005). A finite sample correction for the variance of linear
efficient two-step gmm estimators. Journal of Econometrics 126 (1), 25–51.

39



A Data

This appendix describes the selection of the estimation sample, and presents

more detailed summary statistics.

The sample was first restricted to white respondents in the NLSY97.

This leaves 2,702 white men and 2,530 white women. Respondents who

reported being in the military were then dropped, leaving 34,522 person/year

observations for 2,470 men, and 31,378 observations for 2,481 women.63

Restricting observations to those in which the respondent has entered the

labor market reduces the number of observations to 12,368 for 1,771 white

men, and 10,008 for 1,566 women. Only the primary (current or most recent)

job is used from each interview. Observations in which a woman reported

being pregnant in the current year (since the last interview) or previous year

were dropped, reducing observations to 8,600 for 1,558 women. Finally, 5

observations for men and 2 for a woman were dropped because the absolute

value of the change in log wages was greater than 6.5.64

The preferred dynamic specifications require three consecutive observa-

tions with non-missing values of wage and BMI. Limiting observations to

those that could be from one of three consecutive years leaves 9,037 obser-

vations for 1,473 men and 5,408 observations for 1,060 women.

Appendix tables A1 and A2 present summary statistics for men and

women that are not presented in Table 1. As expected, the sample is largely

63This includes 63 observations in which a respondent reported a military occupation
despite not being otherwise identified as in the military.

64These observations were obvious outliers in the distribution of log wage changes. One
of the wage observations in each case was below $0.2. Otherwise, observations that might
appear to be outliers in the distribution of wages were not dropped from the sample.
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urban. The differences in urbanicity between men and women, as well as most

of the differences in education, appear to be due to how men and women en-

ter the labor market. Looking at the entire sample (not shown), instead of

focusing on those in the estimation sample, reveals no difference by gender

in urbanicity and much smaller differences in education.
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Mean Std. Dev. Min Max
White Men
Wage 19.887 356.121 0.039 23,883.93

Log Wage 2.332 0.619 -3.252 10.081

BMI 26.721 5.524 12.838 63.313

Underweight 0.018 0.134 0 1

Overweight 0.573 0.495 0 1

Obese 0.222 0.415 0 1

Severely Obese 0.078 0.269 0 1

Age 23.711 2.693 16 30

Phone Interview 0.108 0.310 0 1

Yrs since LM Entry 4.474 2.658 1 14

    Yrs in 2009 7.012 2.563 3 14

Actual Experience 4.172 2.459 0.75 13.058

     Exp in 2009 6.398 2.413 1.846 13.058

White Women
Wage 11.051 21.528 0.046 774.08

Log Wage 2.196 0.563 -3.069 6.652

BMI 25.810 6.665 10.962 72.620

Underweight 0.042 0.201 0 1

Overweight 0.417 0.493 0 1

Obese 0.202 0.401 0 1

Severely Obese 0.103 0.304 0 1

Age 23.963 2.554 16 30

Phone Interview 0.103 0.304 0 1

Yrs since LM Entry 4.053 2.491 1 13

    Yrs in 2009 6.187 2.510 3 13

Actual Experience 3.793 2.293 0.75 12.769

     Exp in 2009 5.625 2.334 1.558 12.769
The sample for this table includes all observations that are used as t , t- 1, or t -2 in the main estimation. 
There are 9,037 observations for 1,473 white men; and 5,408 observations for 1060 white women.

Table 1.  Summary Statistics



(1) (2) (3) (4) (5) (6)
L.ln(wage) 0.0722* 0.0605 0.0648 0.0769* 0.0720* 0.0768*

(0.0414) (0.0410) (0.0416) (0.0420) (0.0412) (0.0421)

Overweight -0.1187 -0.0977 -0.1190
(0.1198) (0.1224) (0.1207)

L.Overweight 0.0540 0.0477 0.0549
(0.0491) (0.0456) (0.0470)

Obese 0.0112 0.0054 -0.0051
(0.0979) (0.1021) (0.1012)

L.Obese 0.0030 0.0175 0.0061
(0.0567) (0.0576) (0.0600)

Severely Obese 0.0465 0.0745 0.0557 0.0360
(0.0927) (0.0938) (0.0925) (0.0951)

L.Severely Obese -0.1699*** -0.1649*** -0.1722*** -0.1668**
(0.0632) (0.0598) (0.0594) (0.0680)

AR(1): z -statistic -5.008 -4.968 -4.995 -5.003 -4.998 -4.994
   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.542 -0.685 -0.693 -0.595 -0.568 -0.603
   p -value 0.588 0.494 0.489 0.552 0.570 0.546

Hansen J Statistic 128.5 144.4 146.3 136.7 130.3 135.3
Hansen test p -value 0.802 0.546 0.501 0.718 0.803 0.707

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- values)
   ln(wage) lags 0.377 0.367 0.395 0.341 0.347 0.339
   BMI cat. Lags 0.770 0.516 0.533 0.662 0.738 0.678
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 . There are 5,897 observations for 1,473 men. All 
specifications have a total of 196 instruments, with lags of all three BMI dummies used as instruments in each case. 
Regressions also control for the local unemployment rate and percent obese in the state, as well as dummies for region, urban 
residence, being interviewed over the phone and its lag, completing HS, some college, and college or beyond, calendar year 
and years since labor market entry. To control for commitment to the labor market I include actual experience and its 
interactions with years since entry; however, I treat experience as endogenous, using potential experience and its interactions 
as instruments.

Results for Traditional BMI Categories

…

…

…

…

…

…

…

…

…

…

Table 2. Effects of Past and Current BMI on the Log Wages of White Men
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(1) (2) (3) (4) (5) (6)
L.ln(wage) 0.2110*** 0.2308*** 0.2158*** 0.2209*** 0.2237*** 0.2223***

(0.0567) (0.0568) (0.0542) (0.0557) (0.0577) (0.0575)

Overweight 0.0420 0.0760 0.0509 0.0658
(0.1007) (0.0547) (0.0957) (0.0549)

L.Overweight -0.0781 -0.0819** -0.0625 -0.0931**
(0.0519) (0.0402) (0.0466) (0.0436)

Obese 0.0712 0.0937 0.0785
(0.0840) (0.0649) (0.0814)

L.Obese -0.0319 -0.0032 -0.0085
(0.0582) (0.0477) (0.0563)

Severely Obese 0.0166 0.0267 0.0155
(0.0589) (0.0672) (0.0612)

L.Severely Obese -0.0640 -0.0579 -0.0503
(0.0718) (0.0647) (0.0661)

AR(1): z -statistic -4.863 -4.994 -4.937 -4.928 -4.941 -4.907
   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.405 -0.162 -0.329 -0.455 -0.261 -0.405
   p -value 0.686 0.871 0.742 0.649 0.794 0.686

Hansen J Statistic 111.8 114.6 115.2 121.2 113.4 112.2
Hansen test p -value 0.936 0.943 0.938 0.872 0.938 0.947

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- value)
   ln(wage) lags 0.704 0.667 0.745 0.559 0.775 0.740
   BMI cat. Lags 0.931 0.939 0.912 0.855 0.928 0.958

…

…

…

Results for Traditional BMI Categories

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 . There are 3,154 observations for 1,060 women. All 
specifications have a total of 187 instruments, with lags of all three BMI dummies used as instruments in each case. 
Regressions also control for the local unemployment rate and percent obese in the state, as well as dummies for region, urban 
residence, being interviewed over the phone and its lag, completing HS, some college, and college or beyond, calendar year 
and years since labor market entry. To control for commitment to the labor market I include actual experience and its 
interactions with years since entry; however, I treat experience as endogenous, using potential experience and its interactions 
as instruments.

Table 3. Effects of Past and Current BMI on the Log Wages of White Women
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(1) (2) (3) (4) (5)
L.ln(wage) 0.2223*** 0.224*** 0.214*** 0.216*** 0.220***

(0.0575) (0.053) (0.059) (0.059) (0.053)

Lower BMI Var. 0.0658 0.084 0.050 -0.003 0.018
(0.0549) (0.071) (0.148) (0.145) (0.085)

L.(Lower BMI Var.) -0.0931** -0.087** -0.112*** -0.123*** -0.104**
(0.0436) (0.041) (0.039) (0.041) (0.043)

Severely Obese 0.0155 0.008
(0.0612) (0.060)

L.Severely Obese -0.0503 -0.080
(0.0661) (0.065)

BMI ≥ 37 -0.138** -0.131**
(0.058) (0.056)

L.(BMI ≥ 37) -0.069 -0.099*
(0.057) (0.058)

AR(1): z -statistic -4.907 -5.06 -4.91 -4.91 -5.00
   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.405 -0.47 -0.48 -0.63 -0.62
   p -value 0.686 0.637 0.634 0.528 0.534

Hansen J  statistic 112.2 101.27 120.3 117.9 105.3
Hansen test p -value 0.947 0.989 0.885 0.891 0.976

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- values)
   ln(wage) lags 0.740 0.749 0.590 0.53 0.472
   BMI cat. Lags 0.958 0.993 0.856 0.888 0.983

Lower BMI Variable: BMI ≥ 24.5

…

…

Lower BMI Variable: Overweight

Table 4. Effects of Past and Current BMI on the Log Wages of White Women
Results for Alternative BMI Categories

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 . There are 3,154 observations for 1,060 women. All specifications 
use lags of three BMI dummy variables as GMM instruments. (See text for further detail.) There are 187 instruments in columns (1), (3) and 
(4); and 185 in (2) and (5) where BMI ≥ 37 is used. See Table 3 for a description of control variables.

…

…

…

…

…

…

…

…

…

…



Preferred Dynamic Dynamic w/ OLS OLS
Specification BMI exogenous W/out Lags W/ Lags

L.ln(wage) 0.0720* 0.1213***
(0.0412) (0.0470)

Overweight -0.1190 0.0305 0.0600*** 0.0332
(0.1207) (0.0317) (0.0165) (0.0266)

L.overwt 0.0549 0.0115 0.0369
(0.0470) (0.0312) (0.0262)

Severely Obese 0.0557 0.0314 -0.0646** -0.0116
(0.0925) (0.0382) (0.0262) (0.0493)

L.(Severely Obese) -0.1722*** -0.0525 -0.0799
(0.0594) (0.0609) (0.0515)

AR(1): z -statistic -4.998 -4.746 10.34 10.35
   p- value < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.568 -0.523 11.71 11.65
   p -value 0.570 0.601 < 0.001 < 0.001

Number of Instruments 196 88 … …

Hansen test (p- value) 0.803 0.766 … …

…

Table 5A.  Preferred Specification Compared to Simpler Models
White Men

… …

…

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 . There are 5,897 observations for 1,473 men. Specifications 
are as described previously, except for BMI variables being treated as exogenous in the later three columns.



Preferred Dynamic Dynamic w/ OLS OLS
Specification BMI exogenous W/out Lags W/ Lags

WHO BMI Thresholds
L.ln(wage) 0.2223*** 0.2986***

(0.0575) (0.0746)

Overweight 0.0658 -0.0168 -0.0555*** -0.0069
(0.0549) (0.0342) (0.0208) (0.0285)

L.overwt -0.0931** 0.0151 -0.0667**
(0.0436) (0.0297) (0.0286)

Severely Obese 0.0155 -0.0096 0.0323 0.0361
(0.0612) (0.0569) (0.0286) (0.0345)

L.(Severely Obese) -0.0503 -0.0234 0.0091
(0.0661) (0.0391) (0.0363)

AR(1): z -statistic -4.907 -4.891 10.07 10.11
   p- value < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.405 -0.536 7.57 7.58
   p -value 0.686 0.592 < 0.001 < 0.001

Number of Instruments 187 86 … …

Hansen test (p- value) 0.947 0.818 … …

Alternative BMI Thresholds
L.ln(wage) 0.2197*** 0.3009***

(0.0528) (0.0730)

BMI ≥ 24.5 0.0177 0.0084 -0.0564*** 0.0108
(0.0852) (0.0277) (0.0205) (0.0300)

L.(BMI ≥ 24.5) -0.1039** 0.0195 -0.0901***
(0.0431) (0.0332) (0.0298)

BMI ≥ 37 -0.1305** 0.0615 0.0419 0.0151
(0.0564) (0.0771) (0.0323) (0.0385)

L.(BMI ≥ 37) -0.0990* -0.0099 0.0525
(0.0577) (0.0825) (0.0395)

AR(1): z -statistic -5.028 -4.904 10.06 10.12
   p- value < 0.001 < 0.001 < 0.001 < 0.001
AR(2): z -statistic -0.606 -0.604 7.58 7.59
   p -value 0.545 0.546 < 0.001 < 0.001

Number of Instruments 187 86 … …

Hansen test (p- value) 0.976 0.818 … …
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 . There are 3,154 observations for 1,060 women. Specifications 
are as described previously, except for BMI variables being treated as exogenous in the later three columns.

Table 5B.  Preferred Specification Compared to Simpler Models
White Women

… …

…

…

… …

…

…



Table 6. Effects of Health Shocks on Identification in the Preferred Models

Preferred Preferred
Specification  t  only t & t -1 Specification  t  only t & t -1

WHO BMI Thresholds
L.ln(wage) 0.0720* 0.0709* 0.0707* 0.2223*** 0.2255*** 0.2235***

(0.0412) (0.0416) (0.0414) (0.0575) (0.0569) (0.0568)

Overweight -0.1190 -0.1266 -0.1239 0.0658 0.0783 0.0954
(0.1207) (0.1148) (0.1168) (0.0549) (0.0801) (0.0898)

L.Overweight 0.0549 0.0569 0.0561 -0.0931** -0.0881** -0.0845*
(0.0470) (0.0477) (0.0476) (0.0436) (0.0429) (0.0459)

Severely Obese 0.0557 0.0311 0.0310 0.0155 0.0256 0.0094
(0.0925) (0.0991) (0.1027) (0.0612) (0.0683) (0.0700)

L.(Severely Obese) -0.1722*** -0.1708*** -0.1697*** -0.0503 -0.0605 -0.0667
(0.0594) (0.0645) (0.0643) (0.0661) (0.0671) (0.0673)

Hansen J statistic, χ2(df) 130.3 129.2 129.6 112.2 114.6 113.9
   p -value 0.80 0.82 0.82 0.95 0.93 0.93

BMI diff-in-Hansen, χ2(df 102.1 101.2 101.6 81.31 83.55 82.66
   p -value 0.74 0.76 0.75 0.96 0.94 0.95

Alternative BMI Thresholds for White Women
L.ln(wage) 0.2197*** 0.2191*** 0.2285***

(0.0528) (0.0541) (0.0535)

BMI ≥ 24.5 0.0177 0.0218 0.0190
(0.0852) (0.1087) (0.1021)

L.(BMI ≥ 24.5) -0.1039** -0.0993** -0.0950**
(0.0431) (0.0423) (0.0456)

BMI ≥ 37 -0.1305** -0.1405** -0.1499**
(0.0564) (0.0576) (0.0619)

L.(BMI ≥ 37) -0.0990* -0.1084* -0.1005*
(0.0577) (0.0554) (0.0564)

Hansen J statistic, χ2(df) 105.3 106.8 108.7
   p -value 0.98 0.97 0.96

BMI diff-in-Hansen, χ2(df 75.1 76.1 77.6
   p -value 0.98 0.98 0.97

… … …

… … …

…

……

… … …

White Men White Women

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  There are 5,897 observations for 1,473 men, and 3,154 
observations for 1,060 women. General Health is reported on a 5-point scale from "Excellent" (1) to "Poor" (5), with "Excellent" being the 
excluded category. χ2 degrees of freedom for the Hansen J  statistic and BMI diff-in-Hansen are 145 and 112 for men, and 136 and 103 
for women.

…

… … …

… … …

Changes in Health Changes in Health

… …



Mean Std. Dev. Min Max
ln(Wage) 2.332 0.619 -3.252 10.081

ln(Wage) Difference 0.052 0.587 -6.202 6.142

Decrease in BMI cat. 0.031 0.174 0 1

Increase in BMI cat. 0.058 0.235 0 1

South 0.319 0.466 0 1

Urban 0.703 0.457 0 1

Part Time 0.071 0.257 0 1

Married 0.231 0.422 0 1

Any Children 0.272 0.445 0 1

HS 0.362 0.480 0 1

Some College 0.239 0.427 0 1

College 0.171 0.376 0 1

Local Unempl. Rate 6.314 2.734 0 27.8

Occupations
Service 0.155 0.362 0 1

Mgmt, Tech., & Prof. 0.177 0.382 0 1

Sales 0.109 0.312 0 1

Clerical, Admin. 0.088 0.284 0 1

Misc. Blue Collar 0.470 0.499 0 1
Note: As in Table 1, there are 9,037 observations used for most of these variables. Occuption summarized
where not missing. "Decrease (or Increase) in BMI cat." refers to the fraction who move to a lower (or higher)
BMI category as defined by the WHO.

Table A1.  Additional Summary Statistics for White Men



Mean Std. Dev. Min Max
ln(Wage) 2.196 0.563 -3.069 6.652

ln(Wage) Difference 0.044 0.488 -6.060 4.499

Decrease in BMI cat. 0.026 0.159 0 1

Increase in BMI cat. 0.051 0.220 0 1

South 0.331 0.470 0 1

Urban 0.757 0.429 0 1

Part Time 0.115 0.319 0 1

Married 0.253 0.435 0 1

Any Children 0.204 0.403 0 1

HS 0.280 0.449 0 1

Some College 0.282 0.450 0 1

College 0.319 0.466 0 1

Local Unempl. Rate 6.237 2.674 0 19.2

Occupations
Service 0.236 0.425 0 1

Mgmt, Tech., & Prof. 0.314 0.464 0 1

Sales 0.133 0.340 0 1

Clerical, Admin. 0.248 0.432 0 1

Misc. Blue Collar 0.069 0.254 0 1
Note: As in Table 1, there are 5,408 observations used for most of these variables. Occuption summarized
where not missing. "Decrease (or Increase) in BMI cat." refers to the fraction who move to a lower (or higher)
BMI category as defined by the WHO.

Table A2.  Additional Summary Statistics for White Women
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